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In this paper, a lattice Boltzmann model for simulating temperature-sensitive ferrofluids is presented. The
lattice Boltzmann equation for modeling the magnetic field is formulated using a scalar magnetic potential.
Introducing a time derivative into the original elliptic equation for the scalar potential leads to an advection-
diffusion equation, with an effective velocity determined by the temperature gradient. The time derivative is
multiplied by an adjustable preconditioning parameter to ensure that the lattice Boltzmann solution remain
close to a solution of the original elliptic equation for the scalar potential. To test the present lattice Boltzmann
model, numerical simulations for the thermomagnetic nature convection of the ferrofluids in a cubic cavity are
carried out. Good agreement between the obtained results and experimental data shows that the present lattice
Boltzmann model is promising for studying temperature-sensitive ferrofluid flows.
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I. INTRODUCTION

Ferrofluids are composed of magnetic nanoparticles sus-
pended in a carrier fluid �1�. Such fine particles may be
coated by a suitable surfactant to keep a stable suspension
state and they can be treated as particles of single magnetic
domain. The ferrofluids are a type of functional fluids whose
flow and energy transport processes can be controlled by
adjusting an external magnetic field. Due to this unique prop-
erty, the ferrofluids have been applied to various aspects in
practices such as heat pumps, energy conversion �2�, and
have also attracted a great deal of research interests from
academics and industries �3,4�.

Numerically, there are a number of different techniques
for studying the ferrofluids �5,6�, most of which are based on
finite difference or finite volume methods, in which the con-
tinuum conservation equations and the Maxwell equations
are discretized and solved on computational grids. An alter-
native approach, which is becoming increasingly popular, is
the lattice Boltzmann �LB� method �LBM� �7�. The LBM has
its solid root in kinetic theory and the general idea behind it
is to compute a particle density distribution function, which
represents fluid elements with a discrete velocity along the
direction at spatial and temporal space as they move and
collide on a lattice. The collective behavior of the distribu-
tion functions of the particles represents the dynamics of
fluid flows. To date, several versions of the LBM have been
used to study the magnetic fluid flows including magnetohy-
drodynamics �MHD� �8–11� or ferrohydrodynamics �FHD�
�12–17� of the magnetic flows. However, directly solving the
MHD or the FHD is difficult because the flux tensor of the
electric field in the Maxwell equation is antisymmetric. The
bidirectional streaming scheme of the tensor particle distri-
bution function �8,10,12,13� and the vector-based distribu-
tion function technique �11,16,17� of the LBMs for simulat-
ing the MHD or the FHD have been proposed, respectively,
to overcome the aforementioned difficulty and to model the

magnetization evolution or the magnetic induction equation.
These LBMs can model the magnetic field with the second-
order time accuracy and in a wide range of magnetizations.

In this paper, a simpler LB model is presented to solve the
Maxwell equation in simulating the temperature-sensitive
ferrofluids. Different from the above LBMs
�8,10–12,14,16,17�, which consider the magnetoviscous ef-
fect due to noncollinear of the magnetization and magnetic
intensity, the present LB model only concerns collinear situ-
ation in a narrow range of the magnetic-field strength and
temperature. As a consequence of Coulomb’s law, the Max-
well equation of the magnetic intensity can be written instead
by an elliptic equation of the magnetic scalar potential
�1,18�. Introducing a time derivative into the elliptic equation
further leads to an advection-diffusion equation. By defining
an effective velocity, which is a function of the temperature
gradient, a LB scheme is straightforwardly constructed based
on the advection-diffusion equation in a fashion of that for
modeling the temperature transport equation. The present LB
scheme has the first-order time accuracy. To ensure that the
solution of the LB scheme remains close to a solution of the
original elliptic equation for the scalar potential, the time
derivative in the advection-diffusion equation is multiplied
by an adjustable preconditioning parameter. This technique
can also improve the convergence speed of solutions for
steady-state flows. In contrast to the existing LBMs using
tensor or vector-based distributions to model the magnetic
field �8,10–13,16,17�, the distribution function representing
the magnetic field in the present scheme is a scalar, so vari-
ables and computer memory resources required by the
present LB scheme are less than those of the existing models.
Moreover, the numerical implementation of the present LB
scheme for the magnetic field is straightforward and similar
to that for the advection and diffusion of a scalar.

The rest of the paper is organized as follows. In Sec. II,
we briefly give a description of the ferrofluid hydrodynam-
ics. A short derivation of the magnetic force and the potential
equation with a preconditioning parameter is presented. In
Sec. III, a lattice Boltzmann scheme is introduced for the
flow and magnetic field, respectively. Specifically, the lattice
Boltzmann equation for the magnetic field is formulated in a
similar form of the thermal lattice Boltzmann equation. Sec-
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tion IV focuses on the implementations of the boundary con-
ditions and the numerical illustrations of the present LBM.
The thermomagnetic nature convection of the ferrofluids in a
cubic cavity is simulated. The results obtained are compared
to the experimental measurements conducted in our labora-
tories. A conclusion is given in Sec. V.

II. FERROFLUID HYDRODYNAMICS

A. Governing equations

In the theory of the ferrofluids, a flow under an imposed
magnetic field undergoes a magnetic force. The ferrofluid
flow can be described by the following governing equations
�1,18�

�t� + � · ��u� = 0, �1�

�t��u� + � · ��uu� = − ��p + �0�
0

H �M − �� �M

��
�

H,T
	dH�

+ �
�2u +
1

3
� �� · u�� + �0M · �H

− ���T − T0�g , �2�


�CP − �0H · � �M

�T
�

H
���tT + u · �T�

= ��2T − 
�0T� �M

�T
�

H

·
DH

Dt
� , �3�

� � H = 0; � · B = 0. �4�

In the above equations, u is the velocity field, D /Dt is the
material derivative, �= �� /�x ,� /�y ,� /�z with x, y, and z the
axes of a three-dimensional system, � is the fluid density, p is
the pressure, and T is the temperature. � is the dynamical
viscosity and �0 is the magnetic permeability of vacuum, �
is the expansion coefficient under the Boussinesq approxima-
tion. H, M, and B are the magnetic intensity, the magnetiza-
tion, and the magnetic induction, respectively. � is the ther-
mal conductivity of the fluid, CP is the specific heat at
constant pressure.

B. Magnetic force

Given that magnetization is in equilibrium �M parallel to
H� and the magnetic induction is solenoid �� ·B=0 and B
=�0�H+M�=�0�1+M /H�H=�H�, the magnetic force
�0M ·�H can be simplified to

�0M · �H = �0
M

H
H · �H

= �0
M

H

1

2
� �H · H� − H � �� � H�� ,

=�0M � H . �5�

Equation �5� represents the component of the magnetic force
per unit volume and depends on the existence of the mag-

netic gradient in the ferrofluids. Since for the normal flows,
the magnetization depends only on the magnetic intensity H
and the temperature T, the term �0�0

H�M −���M /���H,TdH
of Eq. �2� can thus be thus written by

��0�
0

H �M − �� �M

��
�

H,T
	dH

= �0M � H + �0�
0

H � �M

�T
�

H

� TdH +
H2

2
� �

− �
�� ��

��
�

T

H2

2
� . �6�

Generally, the magnetization of the magnetic fluid is a
function of H and T. If the temperature field is nonuniform
and the ferrofluid is thermosensitive, the magnetic force be-
comes the thermomagnetic driving force that may lead to
thermomagnetic convection. In a narrow range of the mag-
netic intensity and the temperature, the magnetization M of
the magnetic fluid can be given as �18�

M = �0H − K�T − T0� , �7�

where K=�0H / �Tc−T0�, T0 and Tc are the reference and Cu-
rie temperatures, respectively, and �0 is magnetization rate at
T0. With Eq. �7� we have

M

H
=

�0�Ts − T�
Ts − T0

, �8�

� �M

�T
�

H

= − �0H/�Tc − T0� . �9�

In most situations, the temperature range of an operated
flow is far from the Curie temperature ���M /�T�H=0�. Using
Eqs. �5�–�9�, and with the knowledge of the incompressible
assumption �� ·u=0 and ��� /���T=0�, Eqs. �1�–�3� are re-
duced to the following equations:

�t� + � · ��u� = 0, �10�

�t��u� + � · ��uu� = − �p + ��2u +
�0�0H2

2�Tc − T0�
� T

− ���T − T0�g , �11�

�tT + u · �T =
��Tc − T0�

��CP�Tc − T0� + �0�0H2�
�2T

−

�0�0HT
DH

Dt

��CP�Tc − T0� + �0�0H2�
. �12�

C. Magnetic potential equation

For nonconductive flows, the magnetic intensity H and
the magnetization M can be expressed as functions of a sca-
lar potential 	 as H=�	 �1,18�. Thus we can obtain an
elliptic equation for 	 from Eqs. �4� and �8� as
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�t	 + uT · �	 = 
1 +
�0�T − T0�

Tc − T0
��2	 , �13�

where uT=−��M /H�=�0�T / �Tc−T0� defines an effective
velocity. The time derivative �t	 is introduced in Eq. �13� to
allow it to be solved in local time steps. To ensure that the
LB solution of 	 in Sec. III remains close to that of Eq. �13�,
an adjustable preconditioning parameter 
 is multiplied �t	
in Eq. �13� and we have

1



�t	 + uT · �	 = 
1 +

�0�T − T0�
Tc − T0

��2	 . �14�

III. LATTICE BOLTZMANN MODEL

A. Lattice Boltzmann schemes

In terms of the lattice Boltzmann theory �7,19�, Eqs.
�10�–�12� can be solved by the following lattice Boltzmann
equations for the velocity and the temperature, respectively:

f��r + ���t,t + �t� − f��r,t� = −
f��r,t� − f�

eq�r,t�
 f

+ w�

� f − 0.5��t

 fcs
2 F · ��� − u� ,

�15�

g��r + ���t,t + �t� − g��r,t� = −
g��r,t� − g�

eq�r,t�
g

+ w�S�t,

�16�

with the respective equilibrium distribution functions given
by

f�
eq�r,t� = w���1 +

�� · u

cs
2 +

1

2cs
2� ��� · u�2

cs
2 − u2�	 ,

�17�

g�
eq�r,t� = w�

DT

2 � ��
2

Dcs
2 +

1

D
���

2

cs
2 − 2��� · u

cs
2

+
1

2cs
2� ��� · u�2

cs
2 − u2�	 , �18�

and the force F and the source S are written as

F =
�0�0H2

2�Tc − T0�
� T − ���T − T0�g , �19�

S = −

�0�0HT
DH

Dt

��CP�Tc − T0� + �0�0H2�
, �20�

where r=r�x ,y ,z� is the spatial vector. The relaxation pa-
rameters in Eqs. �15� and �16� are determined by the viscos-
ity and the thermal conductivity, respectively, as

 f =
�

�0cs
2�t

+ 0.5, �21�

g =
D

�D + 2�
��Tc − T0�

��CP�Tc − T0� + ��0�0H2��cs
2�t

+ 0.5. �22�

The sound speed cs, the weight coefficient w�, and the dis-
crete velocity �� used in the above LBM scheme can be
referred to the discrete velocity model of D2Q9 for two di-
mension �2D� and D3Q19 for three dimension �3D� �20�. The
density, velocity, and temperature are calculated by

� = �
�

f�,

�u = �
�

f��� + 0.5�tF ,

T = �
�

g�. �23�

For the thermal hydrodynamics, a number of previous re-
searches �19,20� have shown by the Chapman-Enskog analy-
sis, the lattice Boltzmann Eqs. �15� and �16� with Eqs.
�17�–�23� be able to recover the macroscopic Eqs. �10� and
�11� in the limit of low frequencies and long wavelengths,
respectively.

B. Lattice Boltzmann equation for the magnetic potential

Equation �14� has a similar form of Eq. �12� and both are
the advection/diffusion equations. Therefore, in a similar
LBM fashion of Eq. �16� for the temperature, a lattice Bolt-
zmann scheme for the magnetic potential can be constructed
by introducing a microscopic magnetic potential distribution
function h� and it can be written as

h��r + ���t,t + �t� − h��r,t� = −
h��r,t� − h�

eq�r,t�
h

. �24�

The magnetic potential is calculated by an algebraic summa-
tion of the magnetic potential distribution function,

	 = �
�

h�. �25�

A crucial step in the developing a LBM is the selection of
an appropriate single-particle equilibrium distribution func-
tion associated with vanishing of the collision operator. The
magnetic potential equilibrium distribution function has to be
consistent with definition of Eq. �25�, and in addition has to
give rise the correct magnetic dynamics. A suitable equilib-
rium distribution function fulfilling the above conditions can
be given by

h�
eq�r,t� = w�	�1 +

�� · 
uT

cs
2 +

1

2cs
2� ��� · 
uT�2

cs
2 − �
uT�2�	 .

�26�

By using the Chapmann-Enskog analysis, one can easily
prove that Eq. �24� with Eqs. �25� and �26� recovers to the
magnetic potential Eq. �14�, and the relaxation parameter h
is determined through the following relation:
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h =



cs
2�t

1 +

�0�T − T0�
Tc − T0

� + 0.5. �27�

The flow field and the magnetic field are coupled for the
temperature-sensitive magnetic fluid flows, and Eqs. �19�,
�20�, �22�, and �27� clearly show this mechanism mesoscopi-
cally. In numerical implementation, the preconditioned pa-
rameter can be given by letting the value of h around 1.

IV. NUMERICAL SIMULATIONS

To test the present lattice Boltzmann model, numerical
simulations for the thermomagnetic nature convection of the
ferrofluids in a cubic cavity under uniform magnetic field are
carried out. The case chosen in this simulation are in line
with our experimental conditions �21�, which are given in
Table I. The cavity �Fig. 1� sealed with rigid walls is filled
with a thermal sensitive magnetic fluid, and it is heated and
cooled from the bottom and upper walls, respectively. The
side walls of the cavity are insulated. In the numerical simu-
lations, a uniform magnetic intensity H0 is imposed along the
opposite direction of the gravitation. The value of H0 and the
temperature difference �T=Tb−Tu between the upper and
bottom walls are given by the Rayleigh number Ra
=�0g��TL3 / �k�� and the magnetic Rayleigh number Ram
=�0H0MsL

2 / �k��, where k=� /�0CP is the thermal diffusiv-
ity. The boundary conditions can be referred in Fig. 1. For
the magnetic field, the magnetic potential boundary condi-
tions are set by the magnetic intensity, which are described
as follows:

� �	

�x
�

x=0,L
= 0, � �	

�y
�

y=0,L
= 0, � �	

�z
�

z=0,L
=

H0

�1 + ��
,

�28�

where �=�0�Tc−T� / �Tc−T0�.
For the distribution functions of f� and g� on the bound-

aries, the nonequilibrium bounce back boundary conditions
�19� are employed when the macroscopic velocity and tem-
perature on the solid walls are calculated. Here, we just
briefly give the formulation and detailed can be referred to
Ref. �19�. The nonequilibrium bounce back boundary condi-
tions for velocity and temperature are

f �̄�r,t� − f �̄
eq�r,t� = f��r,t� − f�

eq�r,t� , �29�

g�̄�r,t� − g�̄
eq�r,t� − ��̄

2 �f �̄�r,t� − f �̄
eq�r,t��

= − �g��r,t� − g�
eq�r,t� − ��̄

2 �f��r,t� − f�
eq�r,t�� , �30�

where �̄ denotes directions of the unknown distribution func-
tion, and �̄=−�. For the magnetic potential field, a similar
fashion of Eq. �29� is formulated in this paper. This scheme
enabled the magnetic potential to be specified at the bound-
aries, which is generally equivalent to impose a constant
magnetic intensity on the boundaries. Specifically, the un-
known potential distribution function h�̄�r , t� is calculated as

h�̄�r,t� − h�̄
eq�r,t� = − �h��r,t� − h�

eq�r,t�� . �31�

Table II presents a comparison of the calculated average
Nusselt numbers �Nu=/�−�T /�Z�z=0,Ldxdy� of the natural
convection flows under pure gravitation over a range of Ray-
leigh numbers from 4000 to 10000 obtained for different

TABLE I. Cavity dimension, fluid properties used in present study.

Scale length of cavity
L�mm�

5 Specific heat Cp

�J /kg K�
1.387�105

Density �0 �kg /m3� 1397�103 Expansion coefficient ��1 /K� 6.90�10−4

Viscosity � �Pa s� 1.680�10−2 Curie temperature Tc �K� 477.35

Thermal conductivity � �W / �m K�� 1.570�10−1 Reference temperature T0�K� 298.15

Saturation magnetization Ms�A /m� 2.970�105 Magnetization rate �0 0.2650

Permeability of vacuum �0�H /m� 4��10−7 Gravitational acceleration g�m /s2� 9.8

FIG. 1. Sketch of the thermomagnetic nature convection flow
conditions in the cubic cavity.

TABLE II. A comparison of the calculated average Nusselt
numbers of natural convection flows under pure gravity force over a
range of Rayleigh numbers from 4000 to 10000 obtained for differ-
ent grids.

Ra

Nu

31�31�31 41�41�41 51�51�51

4000 1.2045 1.1961 1.1933

5000 1.4341 1.4203 1.4167

6000 1.5738 1.5540 1.5501

8000 1.7193 1.7012 1.6992

10000 1.8255 1.8146 1.8097
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grids, it is clear that the moderate grids of 41�41�41 de-
scribes the behavior of the system fairly well. Thus, all the
following results presented will be based on the 41�41
�41 grid unless otherwise mentioned.

Figure 2 shows that the calculated magnetic intensity field
in the cubic cavity at Ra=5000 and Ram=1.00�108. The
magnetic intensity H can be evaluated from definition of H
=�	 by using the second-order central finite differencing. It
should be addressed that all the gradients appeared in the
above Eqs. �15�–�26� are calculated by using the second-
order central differencing. As the magnetization M is every-
where parallel to the magnetic field H in the flow field, the
contours of modulus of the magnetization are plotted in y-z
plane of x=0.5 in the cubic cavity. The modulus of M is
calculated directly by Eq. �8�. As shown in Fig. 2, the mag-
netic intensity vectors parallel each other and are aligned
with the positive z coordinate. Due to nature convection ef-
fects and the temperature dependence of the magnetization,
the modulus of the magnetization M is shown to be varied in
the cavity. Large magnetization is found near the side iso-
lated walls and low magnetization appeared in central region.

The nature convection flows in a cubic cavity is usually
considered as a standard benchmark case. Earlier studies
�22,23� showed that the convection roll only occurs above a
critical Rayleigh number Rac�3350 under the pure gravita-
tional force. When magnetic field is imposed, it is expected
the heat transfer is enhanced inside cavity. Figure 3 displays
the dependence of the average Nusselt numbers on the Ray-
leigh numbers at three magnetic Rayleigh numbers of 0,
1.00�108, and 1.25�108. For comparison, experimental
data �21� are also included in this figure. Seen from Fig. 3,
with the increase in the imposed magnetic intensity, the Nus-
selt numbers are increased accordingly, which denotes the
enhancement of the heat transfer inside the cavity. For
Ram=0, no imposed magnetic field, it is found that the na-
ture convection occurs above a critical Rayleigh number of
Rac�3400. This observation is agreed with the earlier stud-
ies �22,23�. Moreover, compared to the experiment data �21�,

Fig. 3 shows that the present model gives a good prediction
of the thermomagnetic nature convection ferrofluid flows in
the cubic cavity. Figures 4�a� and 4�b� show the midplane
flow patterns and temperature fields of Ra=5000 inside the
cavity at Ram=1.00�108 and 1.25�108, respectively. As
shown in Figs. 4�a� and 4�b�, between the heated bottom wall
and the cooled upper wall, a weak flow roll occurs under the
magnetic forces. The main flows bring the low-temperature
fluid downward, and the high-temperature fluid is brought

FIG. 2. �Color online� The calculated magnetic intensity field
and the contours of modulus of the magnetization in y-z plane of
x=0.5 in the cubic cavity for Ra=5000 and Ram=1.00�108.

FIG. 3. Dependence of the average Nusselt numbers on the Ray-
leigh numbers at three magnetic Rayleigh numbers of 0, 1.00
�108, and 1.25�108. �a� Ram=1.00�108 and �b� Ram=1.25
�108.

FIG. 4. �Color online� The midplane flow patterns and tempera-
ture fields of Ra=5000 inside the cavity at Ram=1.00�108 and
1.25�108, respectively.
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upward from regions near the sidewalls. The larger the mag-
netic Rayleigh number, the faster the heated transportation in
the cavity.

V. CONCLUSIONS

In this paper, a LB model for the temperature-sensitive
ferrofluids is presented. The LB scheme for simulating the
magnetic field is formulated based on the advection-diffusion
equation of the scalar magnetic potential. An effective veloc-
ity related to the temperature gradient is defined. To ensure
that the LBM solution remains close to a solution of the
original elliptic equation for the magnetic potential, an ad-
justable preconditioning parameter is multiplied to the time

derivative in the advection/diffusion equation. To test the
present lattice Boltzmann model, numerical simulations for
the thermomagnetic nature convection of the ferrofluids in a
cubic cavity under uniform magnetic field are carried out.
Good agreement between the obtained results and the experi-
mental data shows that the present lattice Boltzmann model
is promising for studying temperature-sensitive ferrofluid
flows.
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